3.1.38 \(\int \frac {1}{(b x+c x^2)^{4/3}} \, dx\) [38]

3.1.38.1 Optimal result
3.1.38.2 Mathematica [C] (verified)
3.1.38.3 Rubi [A] (warning: unable to verify)
3.1.38.4 Maple [F]
3.1.38.5 Fricas [F]
3.1.38.6 Sympy [F]
3.1.38.7 Maxima [F]
3.1.38.8 Giac [F]
3.1.38.9 Mupad [B] (verification not implemented)

3.1.38.1 Optimal result

Integrand size = 13, antiderivative size = 773 \[ \int \frac {1}{\left (b x+c x^2\right )^{4/3}} \, dx=\frac {3 (b+2 c x) \left (-\frac {c \left (b x+c x^2\right )}{b^2}\right )^{4/3}}{c \sqrt [3]{-\frac {c x (b+c x)}{b^2}} \left (b x+c x^2\right )^{4/3}}+\frac {3\ 2^{2/3} (b+2 c x) \left (-\frac {c \left (b x+c x^2\right )}{b^2}\right )^{4/3}}{c \left (b x+c x^2\right )^{4/3} \left (1-\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}\right )}+\frac {3 \sqrt [4]{3} \sqrt {2+\sqrt {3}} b^2 \left (-\frac {c \left (b x+c x^2\right )}{b^2}\right )^{4/3} \left (1-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}\right ) \sqrt {\frac {1+2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}+2 \sqrt [3]{2} \left (-\frac {c x (b+c x)}{b^2}\right )^{2/3}}{\left (1-\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}}{1-\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}}\right )|-7+4 \sqrt {3}\right )}{\sqrt [3]{2} c (b+2 c x) \left (b x+c x^2\right )^{4/3} \sqrt {-\frac {1-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}}{\left (1-\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}\right )^2}}}-\frac {2 \sqrt [6]{2} 3^{3/4} b^2 \left (-\frac {c \left (b x+c x^2\right )}{b^2}\right )^{4/3} \left (1-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}\right ) \sqrt {\frac {1+2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}+2 \sqrt [3]{2} \left (-\frac {c x (b+c x)}{b^2}\right )^{2/3}}{\left (1-\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}}{1-\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}}\right ),-7+4 \sqrt {3}\right )}{c (b+2 c x) \left (b x+c x^2\right )^{4/3} \sqrt {-\frac {1-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}}{\left (1-\sqrt {3}-2^{2/3} \sqrt [3]{-\frac {c x (b+c x)}{b^2}}\right )^2}}} \]

output
3*(2*c*x+b)*(-c*(c*x^2+b*x)/b^2)^(4/3)/c/(-c*x*(c*x+b)/b^2)^(1/3)/(c*x^2+b 
*x)^(4/3)+3*2^(2/3)*(2*c*x+b)*(-c*(c*x^2+b*x)/b^2)^(4/3)/c/(c*x^2+b*x)^(4/ 
3)/(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)-3^(1/2))-2*2^(1/6)*3^(3/4)*b^2*(-c* 
(c*x^2+b*x)/b^2)^(4/3)*(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3))*EllipticF((1-2 
^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)+3^(1/2))/(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/ 
3)-3^(1/2)),2*I-I*3^(1/2))*((1+2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)+2*2^(1/3)* 
(-c*x*(c*x+b)/b^2)^(2/3))/(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)-3^(1/2))^2)^ 
(1/2)/c/(2*c*x+b)/(c*x^2+b*x)^(4/3)/((-1+2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)) 
/(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)-3^(1/2))^2)^(1/2)+3/2*3^(1/4)*b^2*(-c 
*(c*x^2+b*x)/b^2)^(4/3)*(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3))*EllipticE((1- 
2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)+3^(1/2))/(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1 
/3)-3^(1/2)),2*I-I*3^(1/2))*((1+2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)+2*2^(1/3) 
*(-c*x*(c*x+b)/b^2)^(2/3))/(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)-3^(1/2))^2) 
^(1/2)*(1/2*6^(1/2)+1/2*2^(1/2))*2^(2/3)/c/(2*c*x+b)/(c*x^2+b*x)^(4/3)/((- 
1+2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3))/(1-2^(2/3)*(-c*x*(c*x+b)/b^2)^(1/3)-3^ 
(1/2))^2)^(1/2)
 
3.1.38.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.06 \[ \int \frac {1}{\left (b x+c x^2\right )^{4/3}} \, dx=-\frac {3 \sqrt [3]{1+\frac {c x}{b}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{3},\frac {4}{3},\frac {2}{3},-\frac {c x}{b}\right )}{b \sqrt [3]{x (b+c x)}} \]

input
Integrate[(b*x + c*x^2)^(-4/3),x]
 
output
(-3*(1 + (c*x)/b)^(1/3)*Hypergeometric2F1[-1/3, 4/3, 2/3, -((c*x)/b)])/(b* 
(x*(b + c*x))^(1/3))
 
3.1.38.3 Rubi [A] (warning: unable to verify)

Time = 0.48 (sec) , antiderivative size = 684, normalized size of antiderivative = 0.88, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.538, Rules used = {1089, 1093, 1090, 233, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (b x+c x^2\right )^{4/3}} \, dx\)

\(\Big \downarrow \) 1089

\(\displaystyle \frac {2 c \int \frac {1}{\sqrt [3]{c x^2+b x}}dx}{b^2}-\frac {3 (b+2 c x)}{b^2 \sqrt [3]{b x+c x^2}}\)

\(\Big \downarrow \) 1093

\(\displaystyle \frac {2 c \sqrt [3]{-\frac {c \left (b x+c x^2\right )}{b^2}} \int \frac {1}{\sqrt [3]{-\frac {c^2 x^2}{b^2}-\frac {c x}{b}}}dx}{b^2 \sqrt [3]{b x+c x^2}}-\frac {3 (b+2 c x)}{b^2 \sqrt [3]{b x+c x^2}}\)

\(\Big \downarrow \) 1090

\(\displaystyle -\frac {2^{2/3} \sqrt [3]{-\frac {c \left (b x+c x^2\right )}{b^2}} \int \frac {1}{\sqrt [3]{1-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}}d\left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )}{c \sqrt [3]{b x+c x^2}}-\frac {3 (b+2 c x)}{b^2 \sqrt [3]{b x+c x^2}}\)

\(\Big \downarrow \) 233

\(\displaystyle \frac {3 c \sqrt {-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}} \sqrt [3]{-\frac {c \left (b x+c x^2\right )}{b^2}} \int \frac {\sqrt [3]{1-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}}{\sqrt {-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}}d\sqrt [3]{1-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}}{\sqrt [3]{2} b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right ) \sqrt [3]{b x+c x^2}}-\frac {3 (b+2 c x)}{b^2 \sqrt [3]{b x+c x^2}}\)

\(\Big \downarrow \) 833

\(\displaystyle \frac {3 c \sqrt {-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}} \sqrt [3]{-\frac {c \left (b x+c x^2\right )}{b^2}} \left (\left (1+\sqrt {3}\right ) \int \frac {1}{\sqrt {-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}}d\sqrt [3]{1-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}-\int \frac {\frac {2 x c^2}{b^2}+\frac {c}{b}+\sqrt {3}+1}{\sqrt {-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}}d\sqrt [3]{1-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}\right )}{\sqrt [3]{2} b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right ) \sqrt [3]{b x+c x^2}}-\frac {3 (b+2 c x)}{b^2 \sqrt [3]{b x+c x^2}}\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {3 c \sqrt {-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}} \sqrt [3]{-\frac {c \left (b x+c x^2\right )}{b^2}} \left (-\int \frac {\frac {2 x c^2}{b^2}+\frac {c}{b}+\sqrt {3}+1}{\sqrt {-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}}d\sqrt [3]{1-\frac {b^2 \left (-\frac {2 x c^2}{b^2}-\frac {c}{b}\right )^2}{c^2}}-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (\frac {2 c^2 x}{b^2}+\frac {c}{b}+1\right ) \sqrt {\frac {\left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2+\sqrt [3]{1-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}}+1}{\left (\frac {2 c^2 x}{b^2}+\frac {c}{b}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\frac {2 x c^2}{b^2}+\frac {c}{b}+\sqrt {3}+1}{\frac {2 x c^2}{b^2}+\frac {c}{b}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}} \sqrt {-\frac {\frac {2 c^2 x}{b^2}+\frac {c}{b}+1}{\left (\frac {2 c^2 x}{b^2}+\frac {c}{b}-\sqrt {3}+1\right )^2}}}\right )}{\sqrt [3]{2} b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right ) \sqrt [3]{b x+c x^2}}-\frac {3 (b+2 c x)}{b^2 \sqrt [3]{b x+c x^2}}\)

\(\Big \downarrow \) 2418

\(\displaystyle \frac {3 c \sqrt {-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}} \sqrt [3]{-\frac {c \left (b x+c x^2\right )}{b^2}} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (\frac {2 c^2 x}{b^2}+\frac {c}{b}+1\right ) \sqrt {\frac {\left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2+\sqrt [3]{1-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}}+1}{\left (\frac {2 c^2 x}{b^2}+\frac {c}{b}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\frac {2 x c^2}{b^2}+\frac {c}{b}+\sqrt {3}+1}{\frac {2 x c^2}{b^2}+\frac {c}{b}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}} \sqrt {-\frac {\frac {2 c^2 x}{b^2}+\frac {c}{b}+1}{\left (\frac {2 c^2 x}{b^2}+\frac {c}{b}-\sqrt {3}+1\right )^2}}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (\frac {2 c^2 x}{b^2}+\frac {c}{b}+1\right ) \sqrt {\frac {\left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2+\sqrt [3]{1-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}}+1}{\left (\frac {2 c^2 x}{b^2}+\frac {c}{b}-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {\frac {2 x c^2}{b^2}+\frac {c}{b}+\sqrt {3}+1}{\frac {2 x c^2}{b^2}+\frac {c}{b}-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}} \sqrt {-\frac {\frac {2 c^2 x}{b^2}+\frac {c}{b}+1}{\left (\frac {2 c^2 x}{b^2}+\frac {c}{b}-\sqrt {3}+1\right )^2}}}-\frac {2 \sqrt {-\frac {b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right )^2}{c^2}}}{\frac {2 c^2 x}{b^2}+\frac {c}{b}-\sqrt {3}+1}\right )}{\sqrt [3]{2} b^2 \left (-\frac {2 c^2 x}{b^2}-\frac {c}{b}\right ) \sqrt [3]{b x+c x^2}}-\frac {3 (b+2 c x)}{b^2 \sqrt [3]{b x+c x^2}}\)

input
Int[(b*x + c*x^2)^(-4/3),x]
 
output
(-3*(b + 2*c*x))/(b^2*(b*x + c*x^2)^(1/3)) + (3*c*Sqrt[-((b^2*(-(c/b) - (2 
*c^2*x)/b^2)^2)/c^2)]*(-((c*(b*x + c*x^2))/b^2))^(1/3)*((-2*Sqrt[-((b^2*(- 
(c/b) - (2*c^2*x)/b^2)^2)/c^2)])/(1 - Sqrt[3] + c/b + (2*c^2*x)/b^2) + (3^ 
(1/4)*Sqrt[2 + Sqrt[3]]*(1 + c/b + (2*c^2*x)/b^2)*Sqrt[(1 + (-(c/b) - (2*c 
^2*x)/b^2)^2 + (1 - (b^2*(-(c/b) - (2*c^2*x)/b^2)^2)/c^2)^(1/3))/(1 - Sqrt 
[3] + c/b + (2*c^2*x)/b^2)^2]*EllipticE[ArcSin[(1 + Sqrt[3] + c/b + (2*c^2 
*x)/b^2)/(1 - Sqrt[3] + c/b + (2*c^2*x)/b^2)], -7 + 4*Sqrt[3]])/(Sqrt[-((b 
^2*(-(c/b) - (2*c^2*x)/b^2)^2)/c^2)]*Sqrt[-((1 + c/b + (2*c^2*x)/b^2)/(1 - 
 Sqrt[3] + c/b + (2*c^2*x)/b^2)^2)]) - (2*Sqrt[2 - Sqrt[3]]*(1 + Sqrt[3])* 
(1 + c/b + (2*c^2*x)/b^2)*Sqrt[(1 + (-(c/b) - (2*c^2*x)/b^2)^2 + (1 - (b^2 
*(-(c/b) - (2*c^2*x)/b^2)^2)/c^2)^(1/3))/(1 - Sqrt[3] + c/b + (2*c^2*x)/b^ 
2)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + c/b + (2*c^2*x)/b^2)/(1 - Sqrt[3] + 
c/b + (2*c^2*x)/b^2)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((b^2*(-(c/b) - (2* 
c^2*x)/b^2)^2)/c^2)]*Sqrt[-((1 + c/b + (2*c^2*x)/b^2)/(1 - Sqrt[3] + c/b + 
 (2*c^2*x)/b^2)^2)])))/(2^(1/3)*b^2*(-(c/b) - (2*c^2*x)/b^2)*(b*x + c*x^2) 
^(1/3))
 

3.1.38.3.1 Defintions of rubi rules used

rule 233
Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[x/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 1089
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Simp[2*c*((2*p + 
 3)/((p + 1)*(b^2 - 4*a*c)))   Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fre 
eQ[{a, b, c}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 1090
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/(2*c*(-4* 
(c/(b^2 - 4*a*c)))^p)   Subst[Int[Simp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, 
b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]
 

rule 1093
Int[((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b*x + c*x^2)^p/((- 
c)*((b*x + c*x^2)/b^2))^p   Int[((-c)*(x/b) - c^2*(x^2/b^2))^p, x], x] /; F 
reeQ[{b, c}, x] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
3.1.38.4 Maple [F]

\[\int \frac {1}{\left (c \,x^{2}+b x \right )^{\frac {4}{3}}}d x\]

input
int(1/(c*x^2+b*x)^(4/3),x)
 
output
int(1/(c*x^2+b*x)^(4/3),x)
 
3.1.38.5 Fricas [F]

\[ \int \frac {1}{\left (b x+c x^2\right )^{4/3}} \, dx=\int { \frac {1}{{\left (c x^{2} + b x\right )}^{\frac {4}{3}}} \,d x } \]

input
integrate(1/(c*x^2+b*x)^(4/3),x, algorithm="fricas")
 
output
integral((c*x^2 + b*x)^(2/3)/(c^2*x^4 + 2*b*c*x^3 + b^2*x^2), x)
 
3.1.38.6 Sympy [F]

\[ \int \frac {1}{\left (b x+c x^2\right )^{4/3}} \, dx=\int \frac {1}{\left (b x + c x^{2}\right )^{\frac {4}{3}}}\, dx \]

input
integrate(1/(c*x**2+b*x)**(4/3),x)
 
output
Integral((b*x + c*x**2)**(-4/3), x)
 
3.1.38.7 Maxima [F]

\[ \int \frac {1}{\left (b x+c x^2\right )^{4/3}} \, dx=\int { \frac {1}{{\left (c x^{2} + b x\right )}^{\frac {4}{3}}} \,d x } \]

input
integrate(1/(c*x^2+b*x)^(4/3),x, algorithm="maxima")
 
output
integrate((c*x^2 + b*x)^(-4/3), x)
 
3.1.38.8 Giac [F]

\[ \int \frac {1}{\left (b x+c x^2\right )^{4/3}} \, dx=\int { \frac {1}{{\left (c x^{2} + b x\right )}^{\frac {4}{3}}} \,d x } \]

input
integrate(1/(c*x^2+b*x)^(4/3),x, algorithm="giac")
 
output
integrate((c*x^2 + b*x)^(-4/3), x)
 
3.1.38.9 Mupad [B] (verification not implemented)

Time = 9.07 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.05 \[ \int \frac {1}{\left (b x+c x^2\right )^{4/3}} \, dx=-\frac {3\,x\,{\left (\frac {c\,x}{b}+1\right )}^{4/3}\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{3},\frac {4}{3};\ \frac {2}{3};\ -\frac {c\,x}{b}\right )}{{\left (c\,x^2+b\,x\right )}^{4/3}} \]

input
int(1/(b*x + c*x^2)^(4/3),x)
 
output
-(3*x*((c*x)/b + 1)^(4/3)*hypergeom([-1/3, 4/3], 2/3, -(c*x)/b))/(b*x + c* 
x^2)^(4/3)